set.seed(110)
J.x <- 10
J.y <- 10
J <- J.x * J.y
# Number of distance bins from which to simulate data.
n.bins <- 5
# Length of each bin. This should be of length n.bins
bin.width <- c(.10, .10, .20, .3, .1)
# Abundance coefficients
beta <- c(1.0, 0.2, 0.3, -0.2)
p.abund <- length(beta)
# Detection coefficients
alpha <- c(-1.0, -0.3)
p.det <- length(alpha)
# Detection decay function
det.func <- 'halfnormal'
mu.RE <- list()
p.RE <- list()
sp <- FALSE
family <- 'NB'
kappa <- 0.1
offset <- 1.8
transect <- 'point'
dat <- simDS(J.x = J.x, J.y = J.y, n.bins = n.bins, bin.width = bin.width,
beta = beta, alpha = alpha, det.func = det.func, kappa = kappa,
mu.RE = mu.RE, p.RE = p.RE, sp = sp,
sigma.sq = sigma.sq, phi = phi, nu = nu, family = family,
offset = offset, transect = transect)
Run the code above in your browser using DataLab