J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(2:4, size = J, replace = TRUE)
n.sp <- 10
# Community-level covariate effects
# Abundance
beta.mean <- c(0.2, -0.15)
p.abund <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2)
tau.sq.alpha <- c(0.2, 0.3)
p.det <- length(alpha.mean)
mu.RE <- list(levels = c(10, 12),
sigma.sq.mu = c(1.5, 0.3),
beta.indx = list(1, 2))
p.RE <- list(levels = c(15, 10),
sigma.sq.p = c(0.8, 0.5),
alpha.indx = list(1, 2))
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = n.sp, ncol = p.abund)
alpha <- matrix(NA, nrow = n.sp, ncol = p.det)
for (i in 1:p.abund) {
beta[, i] <- rnorm(n.sp, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
alpha[, i] <- rnorm(n.sp, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
factor.model <- TRUE
n.factors <- 3
# Spatial parameters if desired
phi <- runif(n.factors, 3/1, 3/.1)
sp <- TRUE
family <- 'Poisson'
dat <- simMsNMix(J.x = J.x, J.y = J.y, n.rep = n.rep, n.sp = n.sp, beta = beta,
alpha = alpha, mu.RE = mu.RE, p.RE = p.RE, sp = TRUE,
cov.model = 'exponential', phi = phi, factor.model = factor.model,
n.factors = n.factors, family = family)
Run the code above in your browser using DataLab