## Not run:
# rmvn <- function(n, mu=0, V = matrix(1)){
# p <- length(mu)
# if(any(is.na(match(dim(V),p))))
# stop("Dimension problem!")
# D <- chol(V)
# t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
# }
#
# set.seed(1)
#
# n <- 50
# coords <- cbind(runif(n,0,1), runif(n,0,1))
# X <- as.matrix(cbind(1, rnorm(n)))
#
# B <- as.matrix(c(1,5))
# p <- length(B)
# sigma.sq <- 10
# tau.sq <- 0.01
# phi <- 3/0.5
#
# D <- as.matrix(dist(coords))
# R <- exp(-phi*D)
# w <- rmvn(1, rep(0,n), sigma.sq*R)
# y <- rnorm(n, X%*%B + w, sqrt(tau.sq))
#
# n.samples <- 1000
#
# starting <- list("phi"=3/0.5, "sigma.sq"=50, "tau.sq"=1)
# tuning <- list("phi"=0.1, "sigma.sq"=0.1, "tau.sq"=0.1)
# priors <- list("beta.Flat", "phi.Unif"=c(3/1, 3/0.1),
# "sigma.sq.IG"=c(2, 5), "tau.sq.IG"=c(2, 0.01))
# cov.model <- "exponential"
#
# m.1 <- spLM(y~X-1, coords=coords, starting=starting, tuning=tuning,
# priors=priors, cov.model=cov.model, n.samples=n.samples)
#
# m.1 <- spRecover(m.1, start=0.5*n.samples, thin=2)
#
# summary(window(m.1$p.beta.recover.samples))
#
# w.hat <- apply(m.1$p.w.recover.samples, 1, mean)
# plot(w, w.hat, xlab="Observed w", ylab="Fitted w")
# ## End(Not run)
Run the code above in your browser using DataLab