Learn R Programming

spBayesSurv (version 1.0.2)

spCopulaDDP: Fit Marginal Bayesian Nonparametric Survival Model

Description

This function fits a marginal Bayesian Nonparametric model (Zhou, Hanson and Knapp, 2014+) for point-referenced right censored time-to-event data.

Usage

spCopulaDDP(y, delta, x=NULL, s, prediction, prior, mcmc, state, status=TRUE,
            FSA = TRUE, knots, data=sys.frame(sys.parent()), 
            na.action=na.fail, work.dir=NULL)

Arguments

y
an n by 1 vector giving the log survival times.
delta
an n by 1 vector indicating whether it is right censored (=0) or not (=1).
x
an n by p matrix of covariates without intercept. The default is NULL, indicating no covariates included.
s
an n by d matrix of UMT coordinates, where d is the dimension of space.
prediction
a list giving the information used to obtain conditional inferences. The list includes the following elements: spred and xpred giving the n by 2 new locations and corresp
prior
a list giving the prior information. The list includes the following parameter: N an integer giving the truncation of the Dirichlet process, a0 and b0 giving the hyperparame
mcmc
a list giving the MCMC parameters. The list must include the following elements: nburn an integer giving the number of burn-in scans, nskip an integer giving the thinning interval,
state
a list giving the current value of the parameters. This list is used if the current analysis is the continuation of a previous analysis.
status
a logical variable indicating whether this run is new (TRUE) or the continuation of a previous analysis (FALSE). In the latter case the current value of the parameters must be specified
FSA
indicate if the full scale approximation is need. The default is FALSE.
knots
a list giving the knots and block ids when FSA=TRUE. This list includes the following parameter: ss an m by d matrix of UMT coordinates, where d is the dimension of space, blockid
data
data frame.
na.action
a function that indicates what should happen when the data contain NAs. The default action (na.fail) causes spCopulaDDP to print an error message and terminate if there are
work.dir
working directory.

Value

  • The results include the MCMC chains for the parameters discussed in Zhou, Hanson and Knapp (2014+). Use names to find out what they are.

Details

This function fits a marginal Bayesian Nonparametric model (Zhou, Hanson and Knapp, 2014+) for point-referenced right censored time-to-event data.

References

Zhou, H., Hanson, T. and Knapp, R. (2014+). Marginal Bayesian nonparametric model for the time-to-extinction of the mountain yellow-legged frog. Biometrics. In revision.

See Also

anovaDDP

Examples

Run this code
###############################################################
# A simulated data: mixture of two normals
###############################################################
rm(list=ls())
library(MASS)
library(Rcpp)
library(RcppArmadillo)
library(coda)
library(survival)
library(spBayesSurv)

## True parameters 
betaT = cbind(c(3.5, 0.5), c(2.5, -1)); 
wT = c(0.4, 0.6); 
sig2T = c(1^2, 0.5^2);
theta1 = 0.98; theta2 = 0.1;

## generate coordinates: 
## npred is the # of locations for prediction
n = 300; npred = 30; ntot = n + npred;
ldist = 100; wdist = 40;
s1 = runif(ntot, 0, wdist); s2 = runif(ntot, 0, ldist);
s = rbind(s1,s2);
#plot(s[1,], s[2,]);
## divide them into blocks
nldist=5; nwdist=2;
nb=nldist*nwdist; nb; # number of blocks;
coor = matrix(0, nb, 4); ## four edges for each block;
tempindex=1; lstep=ldist/nldist; wstep=wdist/nwdist;
for(i in 1:nwdist){
  for(j in 1:nldist){
    coor[tempindex,] = c((i-1)*wstep, i*wstep, (j-1)*lstep, j*lstep );  
    tempindex = tempindex + 1;
  }
}
## Assign block id for each location
blockid = rep(NA,ntot);
for(i in 1:nb){
  blockid[((s1>coor[i,1])*(s1<=coor[i,2])*(s2>coor[i,3])*(s2<=coor[i,4]))==1]=i;
}
## Choose knots S*
nldist=10; nwdist=4;
m=nldist*nwdist; m; # number of knots;
ss = matrix(0, m, 2); 
tempindex=1; lstep=ldist/nldist; wstep=wdist/nwdist;
for(i in 1:nwdist){
  for(j in 1:nldist){
    ss[tempindex,] = c( (i-1)*wstep+wstep/2, (j-1)*lstep+lstep/2);  
    tempindex = tempindex + 1;
  }
}
## Covariance matrix
dnn = .Call("DistMat", s, s, PACKAGE = "spBayesSurv");
corT = theta1*exp(-theta2*dnn)+(1-theta1)*diag(ntot);

## Generate x 
x = runif(ntot,-1.5,1.5);
X = cbind(rep(1,ntot), x);
p = ncol(X); # number of covariates + 1
## Generate transformed log of survival times
z = mvrnorm(1, rep(0, ntot), corT);
## The pdf of Ti:
fi = function(y, xi, w=wT){
  nw = length(w);
  ny = length(y);
  res = matrix(0, ny, nw);
  Xi = c(1,xi);
  for (k in 1:nw){
    res[,k] = w[k]*dnorm(y, sum(Xi*betaT[,k]), sqrt(sig2T[k]) )
  }
  apply(res, 1, sum)
}
## true plot
xx = seq(-2, 7, 0.01)
plot(xx, fi(xx, -1), "l", lwd=2, col=2)
lines(xx, fi(xx, 1), "l", lwd=2, col=3)
## The CDF of Ti:
Fi = function(y, xi, w=wT){
  nw = length(w);
  ny = length(y);
  res = matrix(0, ny, nw);
  Xi = c(1,xi);
  for (k in 1:nw){
    res[,k] = w[k]*pnorm(y, sum(Xi*betaT[,k]), sqrt(sig2T[k]) )
  }
  apply(res, 1, sum)
}
## The inverse for CDF of Ti
Finvsingle = function(u, xi) {
  res = uniroot(function (x) Fi(x, xi)-u, lower=-500, upper=500);
  res$root
}
Finv = function(u, xi) {sapply(u, Finvsingle, xi)};
## Generate log of survival times y
u = pnorm(z);
y = rep(0, ntot);
for (i in 1:ntot){
  y[i] = Finv(u[i], x[i]);
}
#plot(x,y);
yTrue = y;

## Censoring scheme
Centime = runif(ntot, 3.5,5);
Centime = 10000;
delta = (y<=Centime) +0 ;
sum(delta)/ntot;
cen = which(delta==0);
y[cen] = Centime[cen];

## make a data frame
dtotal = data.frame(s1=s1, s2=s2, y=y, x=x, delta=delta, yTrue=yTrue, id=blockid);
## Hold out npred=30 for prediction purpose
predindex = sample(1:ntot, npred);
dpred = dtotal[predindex,];
dtrain = dtotal[-predindex,];

# rename the variables 
d = dtrain; n=nrow(d); n;
d = d[order(d$id), ];
s = cbind(d$s1, d$s2);
y = d$y;
x = d$x;
delta =d$delta;

# FSA settings
knots = list(ss=ss, blockid=d$id);

# Prediction settings 
xpred = dpred$x;
s0 = cbind( dpred$s1, dpred$s2 );
prediction = list(spred=s0, xpred=xpred, predid=dpred$id);

###############################################################
# spatial copula DDP 
###############################################################
# MCMC parameters
nburn <- 5000
nsave <- 5000
nskip <- 0
ndisplay <- 500
mcmc <- list(nburn=nburn,
             nsave=nsave,
             nskip=nskip,
             ndisplay=ndisplay)

# Prior information
prior = list(N = 10, 
             a0 = 2, b0 = 2);

# current state values
state <- NULL;

# Fit the model
res = spCopulaDDP( y = y,
              delta =delta, 
              x = x, 
              s = s, 
              prediction=prediction, 
              prior=prior, 
              mcmc=mcmc,
              state=state,
              FSA=FALSE,status=TRUE,
              knots=knots);
# trace plots
par(mfrow = c(3,2))
w.save2 = res$w;
Kindex = which.max(rowMeans(w.save2));
traceplot(mcmc(w.save2[Kindex,]), main="w")
sig2.save2 = res$sigma2;
traceplot(mcmc(sig2.save2[Kindex,]), main="sig2")
beta.save2 = res$beta;
alpha.save2 = res$alpha;
traceplot(mcmc(beta.save2[2,Kindex,]), main="beta")
traceplot(mcmc(alpha.save2), main="alpha")
theta1.save2 = res$theta1;
theta2.save2 = res$theta2
traceplot(mcmc(theta1.save2), main="theta1")
traceplot(mcmc(theta2.save2), main="theta2")

## LPML
LPML2 = sum(log(res$cpo)); LPML2;
## MSPE
mean((dpred$yTrue-apply(res$Ypred, 1, median))^2); 

## Proportions for number of clusters 
gg=apply(res$K, 2, function(x) length(table(x)));
table(gg)/length(gg);

## plots
par(mfrow = c(2,2));
xnew = c(-1, 1);
xpred = cbind(xnew); 
nxpred = nrow(xpred);
ygrid = seq(0,6.0,0.05); tgrid = exp(ygrid);
ngrid = length(ygrid);
estimates = GetCurves(res, xpred, ygrid, CI=c(0.05, 0.95));
fhat = estimates$fhat; 
Shat = estimates$Shat;
## density in y
plot(ygrid, fi(ygrid, xnew[1]), "l", lwd=2, ylim=c(0, 0.8), 
      xlim=c(0,6), main="density in y")
for(i in 1:nxpred){
  lines(ygrid, fi(ygrid, xnew[i]), lwd=2)
  lines(ygrid, fhat[,i], lty=2, lwd=2, col=4);
}
## survival in y
plot(ygrid, 1-Fi(ygrid, xnew[1]), "l", lwd=2, ylim=c(0, 1), 
      xlim=c(0,6), main="survival in y")
for(i in 1:nxpred){
  lines(ygrid, 1-Fi(ygrid, xnew[i]), lwd=2)
  lines(ygrid, Shat[,i], lty=2, lwd=2, col=4);
  lines(ygrid, estimates$Shatup[,i], lty=2, lwd=1, col=4);
  lines(ygrid, estimates$Shatlow[,i], lty=2, lwd=1, col=4);
}
## density in t
plot(tgrid, fi(ygrid, xnew[1])/tgrid, "l", lwd=2, ylim=c(0, 0.15), 
      xlim=c(0,100), main="density in t")
for(i in 1:nxpred){
  lines(tgrid, fi(ygrid, xnew[i])/tgrid, lwd=2)
  lines(tgrid, fhat[,i]/tgrid, lty=2, lwd=2, col=4);
}
## survival in t
plot(tgrid, 1-Fi(ygrid, xnew[1]), "l", lwd=2, ylim=c(0, 1), 
      xlim=c(0,100), main="survival in t")
for(i in 1:nxpred){
  lines(tgrid, 1-Fi(ygrid, xnew[i]), lwd=2)
  lines(tgrid, Shat[,i], lty=2, lwd=2, col=4);
  lines(tgrid, estimates$Shatup[,i], lty=2, lwd=1, col=4);
  lines(tgrid, estimates$Shatlow[,i], lty=2, lwd=1, col=4);
}

Run the code above in your browser using DataLab