Learn R Programming

spEDM (version 1.5)

multiview: multiview embedding forecast

Description

multiview embedding forecast

Usage

# S4 method for sf
multiview(
  data,
  columns,
  target,
  nvar,
  lib = NULL,
  pred = NULL,
  E = 3,
  tau = 1,
  k = E + 2,
  nb = NULL,
  top = NULL,
  threads = detectThreads(),
  trend.rm = TRUE
)

# S4 method for SpatRaster multiview( data, columns, target, nvar, lib = NULL, pred = NULL, E = 3, tau = 1, k = E + 2, top = NULL, threads = detectThreads(), trend.rm = TRUE )

Value

A vector (when input is sf object) or matrix

Arguments

data

The observation data.

columns

Names of individual variables.

target

Name of target variable.

nvar

Number of variable combinations.

lib

(optional) Libraries indices.

pred

(optional) Predictions indices.

E

(optional) Dimensions of the embedding.

tau

(optional) Step of spatial lags.

k

(optional) Number of nearest neighbors used for prediction.

nb

(optional) The neighbours list.

top

(optional) Number of reconstructions used for MVE forecast.

threads

(optional) Number of threads.

trend.rm

(optional) Whether to remove the linear trend.

Examples

Run this code
columbus = sf::read_sf(system.file("shapes/columbus.gpkg", package="spData"))
# \donttest{
multiview(columbus,
          columns = c("INC","CRIME","OPEN","PLUMB","DISCBD"),
          target = "HOVAL", nvar = 3)
# }

Run the code above in your browser using DataLab