Unlimited learning, half price | 50% off

Last chance! 50% off unlimited learning

Sale ends in


spEDM (version 1.5)

smap: smap forecast

Description

smap forecast

Usage

# S4 method for sf
smap(
  data,
  target,
  lib = NULL,
  pred = NULL,
  E = 3,
  tau = 1,
  k = E + 2,
  theta = c(0, 1e-04, 3e-04, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3,
    4, 6, 8),
  nb = NULL,
  threads = detectThreads(),
  trend.rm = TRUE
)

# S4 method for SpatRaster smap( data, target, lib = NULL, pred = NULL, E = 3, tau = 1, k = E + 2, theta = c(0, 1e-04, 3e-04, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8), threads = detectThreads(), trend.rm = TRUE )

Value

A list

xmap

self mapping prediction results

varname

name of target variable

Arguments

data

The observation data.

target

Name of target variable.

lib

(optional) Libraries indices.

pred

(optional) Predictions indices.

E

(optional) Dimensions of the embedding.

tau

(optional) Step of spatial lags.

k

(optional) Number of nearest neighbors used for prediction.

theta

(optional) Weighting parameter for distances.

nb

(optional) The neighbours list.

threads

(optional) Number of threads.

trend.rm

(optional) Whether to remove the linear trend.

Examples

Run this code
columbus = sf::read_sf(system.file("shapes/columbus.gpkg", package="spData"))
# \donttest{
smap(columbus,target = "INC")
# }

Run the code above in your browser using DataLab