# S4 method for sf
simplex(
data,
column,
target,
lib = NULL,
pred = NULL,
E = 1:10,
tau = 1,
k = E + 2,
nb = NULL,
threads = detectThreads(),
detrend = TRUE
)
# S4 method for SpatRaster
simplex(
data,
column,
target,
lib = NULL,
pred = NULL,
E = 1:10,
tau = 1,
k = E + 2,
threads = detectThreads(),
detrend = TRUE
)
Value
A list
xmap
forecast performance
varname
name of target variable
method
method of cross mapping
tau
step of time lag
Arguments
data
observation data.
column
name of library variable.
target
name of target variable.
lib
(optional) libraries indices.
pred
(optional) predictions indices.
E
(optional) embedding dimensions.
tau
(optional) step of spatial lags.
k
(optional) number of nearest neighbors used.
nb
(optional) neighbours list.
threads
(optional) number of threads to use.
detrend
(optional) whether to remove the linear trend.
References
Sugihara G. and May R. 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344:734-741.