false nearest neighbours
# S4 method for sf
fnn(
data,
target,
E = 1:10,
tau = 1,
style = 1,
stack = FALSE,
lib = NULL,
pred = NULL,
dist.metric = "L1",
rt = 10,
eps = 2,
threads = detectThreads(),
detrend = TRUE,
nb = NULL
)# S4 method for SpatRaster
fnn(
data,
target,
E = 1:10,
tau = 1,
style = 1,
stack = FALSE,
lib = NULL,
pred = NULL,
dist.metric = "L1",
rt = 10,
eps = 2,
threads = detectThreads(),
detrend = TRUE,
grid.coord = TRUE,
embed.direction = 0
)
A vector
observation data.
name of target variable.
(optional) embedding dimensions.
(optional) step of spatial lags.
(optional) embedding style (0 includes current state, 1 excludes it).
(optional) whether to stack embeddings.
(optional) libraries indices (input needed: vector - spatial vector, matrix - spatial raster).
(optional) predictions indices (input requirement same as lib).
(optional) distance metric (L1: Manhattan, L2: Euclidean).
(optional) escape factor.
(optional) neighborhood diameter.
(optional) number of threads to use.
(optional) whether to remove the linear trend.
(optional) neighbours list.
(optional) whether to detrend using cell center coordinates (TRUE) or row/column numbers (FALSE).
(optional) direction selector for embeddings (0 returns all directions, 1-8 correspond to NW, N, NE, W, E, SW, S, SE).
Kennel M. B., Brown R. and Abarbanel H. D. I., Determining embedding dimension for phase-space reconstruction using a geometrical construction, Phys. Rev. A, Volume 45, 3403 (1992).
columbus = sf::read_sf(system.file("case/columbus.gpkg",package="spEDM"))
# \donttest{
fnn(columbus,"crime")
# }
Run the code above in your browser using DataLab