optimal parameter search for smap forecasting
# S4 method for sf
smap(
data,
column,
target,
E = 3,
k = E + 2,
tau = 1,
style = 1,
stack = FALSE,
lib = NULL,
pred = NULL,
dist.metric = "L2",
dist.average = TRUE,
theta = c(0, 1e-04, 3e-04, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3,
4, 6, 8),
threads = detectThreads(),
detrend = TRUE,
nb = NULL
)# S4 method for SpatRaster
smap(
data,
column,
target,
E = 3,
k = E + 2,
tau = 1,
style = 1,
stack = FALSE,
lib = NULL,
pred = NULL,
dist.metric = "L2",
dist.average = TRUE,
theta = c(0, 1e-04, 3e-04, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3,
4, 6, 8),
threads = detectThreads(),
detrend = TRUE,
grid.coord = TRUE,
embed.direction = 0
)
A list
xmapforecast performance
varnamename of target variable
methodmethod of cross mapping
observation data.
name of library variable.
name of target variable.
(optional) embedding dimensions.
(optional) number of nearest neighbors used.
(optional) step of spatial lags.
(optional) embedding style (0 includes current state, 1 excludes it).
(optional) whether to stack embeddings.
(optional) libraries indices (input needed: vector - spatial vector, matrix - spatial raster).
(optional) predictions indices (input requirement same as lib).
(optional) distance metric (L1: Manhattan, L2: Euclidean).
(optional) whether to average distance.
(optional) weighting parameter for distances.
(optional) number of threads to use.
(optional) whether to remove the linear trend.
(optional) neighbours list.
(optional) whether to detrend using cell center coordinates (TRUE) or row/column numbers (FALSE).
(optional) direction selector for embeddings (0 returns all directions, 1-8 correspond to NW, N, NE, W, E, SW, S, SE).
Sugihara G. 1994. Nonlinear forecasting for the classification of natural time series. Philosophical Transactions: Physical Sciences and Engineering, 348 (1688):477-495.
columbus = sf::read_sf(system.file("case/columbus.gpkg",package="spEDM"))
# \donttest{
smap(columbus,"inc","crime",E = 5,k = 6)
# }
Run the code above in your browser using DataLab