Learn R Programming

spGARCH (version 0.2.3)

summary.spARCH: Summary for spARCH object

Description

The function returns a summary of the model fit of a spatial ARCH model (qml.spARCH or qml.SARspARCH).

Usage

# S3 method for spARCH
summary(object, ...)
# S3 method for summary.spARCH
print(x, digits = max(5, .Options$digits - 3),
	signif.stars = TRUE, ...)
# S3 method for spARCH
print(x, ...)

Value

The function returns the input spARCH object, plus

Coef

a matrix with columns for the estimated coefficients, their standard error, t-statistics and corresponding (two-sided, asymptotic) p-values.

AIC

Akaike information criterion

BIC

Bayesian Schwarz information criterion

moran_res

Test on spatial spatial autocorrelation of the residuals (based on Morans I, moran.test).

moran_sq_res

Test on spatial spatial autocorrelation of the squared residuals (based on Morans I, moran.test).

Arguments

object

spARCH object generated by qml.spARCH or qml.SARspARCH.

digits

The number of significant digits to be printed.

signif.stars

Logical variable. If TRUE, significance stars are printed for each coefficient.

x

spARCH object of qml.spARCH.

...

further arguments passed to or from other methods

Author

Philipp Otto philipp.otto@glasgow.ac.uk

Details

The function summary.spARCH returns an spARCH object with all results (coefficients, residuals, diagnostic checks etc.). If the returned object is printed, a detailed summary of the model fit is returned.

See Also

The model fitting functions qml.spARCH and qml.SARspARCH. Function coef will extract the matrix of coefficients with standard errors, t-statistics and p-values.

Examples

Run this code
require("spdep")

# directional spatial ARCH process (W is triangular, 1:1 origin)

rho <- 0.5
alpha <- 1
d <- 5
n <- d^2
nblist <- cell2nb(d, d, type = "queen")
W <- nb2mat(nblist)
W[lower.tri(W)] <- 0
y <- sim.spARCH(n = n, rho = rho, alpha = alpha, W = W, type = "spARCH")

out <- qml.spARCH(y ~ 0, W = W, type = "spARCH")

summary(out)

Run the code above in your browser using DataLab