Several functions are available for the stratum lengths analysis, in particular they compute the stratum lengths for each stratum category, they compute the empirical distributions and many other tools for a graphical analysis.
Usually, the basic inputs for the most of the functions are a vector of categorical data and their location coordinates. They are used to estimate empirical transition probabilities (transiogram), to estimate model parameters (tpfit for one-dimensional Markov chains or multi.tpfit for multidimensional Markov chains). Once parameters are estimated, it's possible to compute theoretical transition probabilities by the use of the function predict.tpfit for one-dimensional Markov chains and predict.multi.tpfit for multidimensional ones.
The function plot.transiogram allows to plot one-dimensional transiograms, while image.multi.tpfit permit to draw transition probability maps. A powerful tool to explore graphically the anisotropy of such process is given by the function imgMultiTransiogram, which draws "quasi-empirical" transition probability maps.
Simulation methods are based on Indicator Cokriging (ck.sim), Fixed or Random Path algorithms (path.sim) and Multinomial Categorical Simulation technique (mcs.sim).
Carle, S. F., Fogg, G. E. (1997) Modelling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains. Mathematical Geology, 29(7), 891-918.
Dynkin, E. B. (1961) Theory of Markov Processes. Englewood Cliffs, N.J.: Prentice-Hall, Inc.
Higham, N. J. (2008) Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics.
Li, W. (2007) A Fixed-Path Markov Chain Algorithm for Conditional Simulation of Discrete Spatial Variables. Mathematical Geology, 39(2), 159-176.
Li, W. (2007) Markov Chain Random Fields for Estimation of Categorical Variables. Mathematical Geology, 39(June), 321-335.
Li, W. (2007) Transiograms for Characterizing Spatial Variability of Soil Classes. Soil Science Society of America Journal, 71(3), 881-893.
Pickard, D. K. (1980) Unilateral Markov Fields. Advances in Applied Probability, 12(3), 655-671.
Sartore, L. (2010) Geostatistical models for 3-D data. M.Phil. thesis, Ca' Foscari University of Venice.
Weise, T. (2009) Global Optimization Algorithms - Theory and Application.