# Example 1: Analyze spatial poisson count data
data(simPoisson)
dat <- simPoisson[1:10, ]
mod1 <- spGLMexact(y ~ x1, data = dat, family = "poisson",
coords = as.matrix(dat[, c("s1", "s2")]),
cor.fn = "matern",
spParams = list(phi = 4, nu = 0.4),
n.samples = 100, verbose = TRUE)
# summarize posterior samples
post_beta <- mod1$samples$beta
print(t(apply(post_beta, 1, function(x) quantile(x, c(0.025, 0.5, 0.975)))))
# Example 2: Analyze spatial binomial count data
data(simBinom)
dat <- simBinom[1:10, ]
mod2 <- spGLMexact(cbind(y, n_trials) ~ x1, data = dat, family = "binomial",
coords = as.matrix(dat[, c("s1", "s2")]),
cor.fn = "matern",
spParams = list(phi = 3, nu = 0.4),
n.samples = 100, verbose = TRUE)
# summarize posterior samples
post_beta <- mod2$samples$beta
print(t(apply(post_beta, 1, function(x) quantile(x, c(0.025, 0.5, 0.975)))))
# Example 3: Analyze spatial binary data
data(simBinary)
dat <- simBinary[1:10, ]
mod3 <- spGLMexact(y ~ x1, data = dat, family = "binary",
coords = as.matrix(dat[, c("s1", "s2")]),
cor.fn = "matern",
spParams = list(phi = 4, nu = 0.4),
n.samples = 100, verbose = TRUE)
# summarize posterior samples
post_beta <- mod3$samples$beta
print(t(apply(post_beta, 1, function(x) quantile(x, c(0.025, 0.5, 0.975)))))
Run the code above in your browser using DataLab