powered by
The following function is used to validate the predicted observations with the actual values based on some threshold.
spT.validation2(z,zhat,cutoff,names=FALSE)
True Positive Rate, Sensitivity, Hit rate, Recall
False Positive Rate, False alarm
False Negative Rate, Miss rate
True Negative Rate, Specificity
Prevalence
Accuracy
Precision, Positive Predictive Value
False Ommission Rate
Positive Likelihood Ratio
Negative Likelihood Ratio
False Discovery Rate
Negative Predictive Value
Diagnostic Odds Ratio
F1 score
Heidke Skill
The original values (matrix or vector).
The predicted values (matrix or vector).
The threshold value or cut-off point.
Logical, if TRUE then print the names of the validation statistics.
spT.pCOVER,spT.validation.
spT.pCOVER,spT.validation
## # Create `x', which is the true values. # Create `y', which is the predicted values. x <- rnorm(100,0,0.1) y <- rnorm(100,0,1) spT.validation2(x, y, cutoff=0,names=TRUE) ##
Run the code above in your browser using DataLab