Usage
spa.control(eps=1e-6,maxiter=20,gcv=c("lGCV","tGCV","fGCV","aGCV"), lqmax=0.2,lqmin=0.05,ldepth=10,ltmin=0.05,lgrid=NULL, lval=NULL,dissimilar=TRUE,pce=FALSE,adjust=0,warn=FALSE,...)
Arguments
eps
 the tolerance parameter for spa using a
    type=class argument.
  
maxiter
 the maximum number of iterations to run the algorithm
    using type=class argument. This parameter forces the
    algorithm to stop even if eps is not met.
  
gcv
aGCV=approximate GCV using the smoother
    SLL+t(SU)*SUL, tGCV=GCV using the smoother
    SLL+SLUsolve(I-SUU,SUL)  (can be slow), lGCV=GCV using the
    supervised smoother (fast but not that good), and fGCV=approximate GCV using the smoother S with
    approximation above (this is no longer documented but it is still implemented).
lqmax
max quantile on the density of distance for data-driven estimation
lqmin
min quantile on the density of distance for data-driven estimation
ldepth
the depth of the search for divide and conquer parameter estimation
ltmin
the minimum value, in-case lqmin is negative
lgrid
if set to an integer, then the divide and conquer approach is bypassed
lval
if set then the smoothing parameter is lval
dissimilar
if the edges represent similarity then set this to
    TRUE.  This flag is intended for use with the Laplacain smoother as
    input (for SPS this flag is ignored and the graph is assumed to
    be dissimilar).  If the flag is FALSE then the supplied kernel is used to
    convert the graph to similarity.
warn
if TRUE then the procedure warns the user that a ginv will
    be used in the matrix inversion (i.e. the matrix is not invertible)
  
pce
 parameter adjust is meant for adjusting hard probability
    class estimates to soft (i.e. if p(z)=1 then p(z)=0.9999), for GCV
    estimation, this pushes GCV away from selecting smaller values.
  
adjust
 apply adjustment W=W+adjust.
...
 mop up additional parameters passed in.