logLik
extracts the log-likelihood (exact or approximated).
fitted
extracts fitted values (see fitted.values
).
fixef
extracts the fixed effects coefficients, $\beta$.
ranef
extracts the predicted random effects, $u$.
vcov
returns the variance-covariance matrix of the fixed-effects coefficients.
Corr
returns a correlation matrix of random effects (with restrictions, see Details).
predictionCoeffs
extracts or precomputes coefficients for prediction (see predict
for an example)
getDistMat
extracts a distance matrix for a Matérn correlation model.## S3 method for class 'HLfit':
logLik(object,REML,...)
## S3 method for class 'HLfit':
fitted(object,...)
## S3 method for class 'HLfit':
fixef(object,...)## S3 method for class 'HLfit':
ranef(object,...)
## S3 method for class 'HLfit':
vcov(object,...)
predictionCoeffs(object)
getDistMat(object,scaled=FALSE)
Corr(object,...)
TRUE
, the function returns the log restricted likelihood (exact or approximated).FALSE
, the function ignores the scale parameter $rho$ and returns unscaled distance.logLik
), vectors (most cases), matrices (for vcov
), matrices or dist objects (for getDistMat
). ranef
returns a vector with attributes,
which inherits from class ranef
which has its own (undocumented) print
method.
Corr
currently returns the correlation matrix of the random effects which are described as Lv (see HLfit
)data(wafers)
m1 <- HLfit(y ~X1+X2+(1|batch),
resid.formula = ~ 1 ,data=wafers,HLmethod="ML")
fixef(m1)
vcov(m1)
ranef(m1)
## see 'predict' for an example with predictionCoeffs and getDistMat
Run the code above in your browser using DataLab