Mixed-Effect Models, Particularly Spatial Models
Description
Inference in mixed-effect models, including generalized linear mixed models with spatial correlations and models with non-Gaussian random effects (e.g., Beta). Variation in residual variance (heteroscedasticity) can itself be represented by a generalized linear mixed model. Various approximations of likelihood or restricted likelihood are implemented, in particular h-likelihood (Lee and Nelder 2001 ) and Laplace approximation.