Loading these data loads three objects describing a mythical 'Gryphon' population used by Wilson et al. to illustrate mixed-effect modelling in quantitative genetics. These objects are a data frame Gryphon_df
containing the model variables, a genetic relatedness matrix Gryphon_A
, and another data frame Gryphon_pedigree
containing pedigree information (which can be used by some packages to reconstruct the relatedness matrix).
data("Gryphon")
Gryphon_df
is
'data.frame': 1084 obs. of 6 variables: $ ID : int 1029 1299 ...: individual identifier $ sex : Factor w/ 2 levels "1","2": sex, indeed $ year : Factor w/ 34 levels "968","970", ...: birth year $ mother: Factor w/ 429 levels "1","2",..: individual's mother identifier $ BWT : num 10.77 9.3 ...: birth weight $ TARSUS: num 24.8 22.5 12 ...: tarsus length
Gryphon_A
is a genetic relatedness matrix, in sparse matrix format, for 1309 individuals.
Gryphon_pedigree
is
'data.frame': 1309 obs. of 3 variables: $ ID : int 1306 1304 ...: individual identifier $ Dam : int NA NA ...: individual's mother $ Sire: int NA NA ...: individual's father
Wilson AJ, et al. (2010) An ecologist's guide to the animal model. Journal of Animal Ecology 79(1): 13-26. 10.1111/j.1365-2656.2009.01639.x
# NOT RUN {
# See help("sparse_precision")
# }
Run the code above in your browser using DataLab