## residVar optional arguments:
# data preparation: simulated trivial life-history data
set.seed(123)
nind <- 20L
u <- rnorm(nind)
lfh <- data.frame(
id=seq_len(nind), id2=seq_len(nind),
feco= rpois(nind, lambda = exp(1+u)),
growth=rgamma(nind,shape=1/0.2, scale=0.2*exp(1+u)) # mean=exp(1+u), var= 0.2*mean^2
)
# multivariate-response fit
fitlfh <- fitmv(submodels=list(list(feco ~ 1+(1|id), family=poisson()),
list(growth ~ 1+(1|id), family=Gamma(log))),
data=lfh)
#
residVar(fitlfh)
residVar(fitlfh, which="phi") # shows fixed phi=1 for Poisson responses
residVar(fitlfh, submodel=2)
residVar(fitlfh, which="family", submodel=2)
residVar(fitlfh, which="formula", submodel=2)
residVar(fitlfh, which="fit", submodel=2) # Fit here characterized by a single scalar
## Prior weights in residVar() vs. get_residVar():
data(wafers)
spfit <- fitme(I(y/1000)~X1, family=gaussian(), data=wafers)
residVar(spfit)[1] # 0.015...
get_residVar(spfit)[1] # 0.015...
spfit2 <- fitme(I(y/1000)~X1, family=gaussian(), data=wafers, prior.weights=rep(2,198))
head(residVar(spfit2)) # 0.015... = phi/prior.weights
head(get_residVar(spfit2)) # 0.030... = phi
spfit3 <- fitme(I(y/1000)~X1, family=gaussian(), data=wafers, fixed=list(phi=2),
prior.weights=rep(2,198))
residVar(spfit3)[1] # 1 = phi/prior.weights
get_residVar(spfit3)[1] # 2 = phi
Run the code above in your browser using DataLab