Learn R Programming

spareg (version 1.1.1)

plot.spar.cv: Plot Method for 'spar.cv' Object

Description

Plot cross-validation measure or number of active variables over different thresholds or number of models of 'spar.cv' object, produce a residuals vs fitted plot, or a plot of the estimated coefficients in each marginal model, sorted by their absolute value.

Usage

# S3 method for spar.cv
plot(
  x,
  plot_type = c("val_measure", "val_numactive", "res_vs_fitted", "coefs"),
  plot_along = c("nu", "nummod"),
  nummod = NULL,
  nu = NULL,
  xfit = NULL,
  yfit = NULL,
  opt_par = c("best", "1se"),
  prange = NULL,
  coef_order = NULL,
  digits = 2,
  ...
)

Value

'ggplot2::ggplot' object

Arguments

x

result of spar.cv function of class 'spar.cv'.

plot_type

one of c("val_measure","val_numactive","res_vs_fitted","coefs").

plot_along

one of c("nu","nummod"); ignored when plot_type="res_vs_fitted".

nummod

fixed value for nummod when plot_along="nu" for plot_type="val_measure" or "val_numactive"; same as for predict.spar.cv when plot_type="res_vs_fitted".

nu

fixed value for \(\nu\) when plot_along="nummod" for plot_type="val_measure" or "val_numactive"; same as for predict.spar.cv when plot_type="res_vs_fitted".

xfit

data used for predictions in "res_vs_fitted".

yfit

data used for predictions in "res_vs_fitted".

opt_par

one of c("best","1se"), only needed for plot_type="res_vs_fitted" to set type of predictions, see predict.spar.cv.

prange

optional vector of length 2 for "coefs"-plot to give the limits of the predictors' plot range; defaults to c(1, p).

coef_order

optional index vector of length p for "coefs"-plot to give the order of the predictors; defaults to 1 : p.

digits

number of significant digits to be displayed in the axis; defaults to 2L.

...

further arguments passed to or from other methods

Examples

Run this code
# \donttest{
example_data <- simulate_spareg_data(n = 100, p = 400, ntest = 100)
spar_res <- spar.cv(example_data$x, example_data$y, nfolds = 3L,
  screencoef = screen_cor(), rp = rp_gaussian(), nummods = c(5, 10))
plot(spar_res)
plot(spar_res, plot_type = "val_measure", plot_along = "nummod", nu = 0)
plot(spar_res, plot_type = "val_measure", plot_along = "nu", nummod = 10)
plot(spar_res, plot_type = "val_numactive",  plot_along = "nummod", nu = 0)
plot(spar_res, plot_type = "val_numactive",  plot_along = "nu", nummod = 10)
plot(spar_res, plot_type = "res_vs_fitted",  xfit = example_data$xtest,
  yfit = example_data$ytest, opt_par = "1se")
plot(spar_res, "coefs", prange = c(1, 400))
# }

Run the code above in your browser using DataLab