Spark ML -- Random Forests

Perform regression or classification using random forests with a spark_tbl.

ml_random_forest(x, response, features, max.bins = 32L, max.depth = 5L, num.trees = 20L, type = c("auto", "regression", "classification"), ...)
An object coercable to a Spark DataFrame (typically, a tbl_spark).
The name of the response vector (as a length-one character vector), or a formula, giving a symbolic description of the model to be fitted. When response is a formula, it is used in preference to other parameters to set the response, features, and intercept parameters (if available). Currently, only simple linear combinations of existing parameters is supposed; e.g. response ~ feature1 + feature2 + .... The intercept term can be omitted by using - 1 in the model fit.
The name of features (terms) to use for the model fit.
The maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity.
Maximum depth of the tree (>= 0); that is, the maximum number of nodes separating any leaves from the root of the tree.
Number of trees to train (>= 1).
The type of model to fit. "regression" treats the response as a continuous variable, while "classification" treats the response as a categorical variable. When "auto" is used, the model type is inferred based on the response variable type -- if it is a numeric type, then regression is used; classification otherwise.
Optional arguments; currently unused.
See Also

Other Spark ML routines: ml_decision_tree, ml_generalized_linear_regression, ml_gradient_boosted_trees, ml_kmeans, ml_lda, ml_linear_regression, ml_logistic_regression, ml_multilayer_perceptron, ml_naive_bayes, ml_one_vs_rest, ml_pca, ml_survival_regression

  • ml_random_forest
Documentation reproduced from package sparklyr, version 0.2.27, License: file LICENSE

Community examples

Looks like there are no examples yet.