ml_lda
From sparklyr v0.2.30
by Javier Luraschi
Spark ML -- Latent Dirichlet Allocation
Fit a Latent Dirichlet Allocation (LDA) model to a Spark DataFrame.
Usage
ml_lda(x, features = dplyr::tbl_vars(x), k = length(features), ...)
Arguments
- x
- An object coercable to a Spark DataFrame (typically, a
tbl_spark
). - features
- The name of features (terms) to use for the model fit.
- k
- The number of topics to estimate.
- ...
- Optional arguments; currently unused.
See Also
Other Spark ML routines: ml_decision_tree
,
ml_generalized_linear_regression
,
ml_gradient_boosted_trees
,
ml_kmeans
,
ml_linear_regression
,
ml_logistic_regression
,
ml_multilayer_perceptron
,
ml_naive_bayes
,
ml_one_vs_rest
, ml_pca
,
ml_random_forest
,
ml_survival_regression
Community examples
Looks like there are no examples yet.