ml_kmeans
From sparklyr v0.3.1
by Javier Luraschi
Spark ML -- K-Means Clustering
Perform k-means clustering on a Spark DataFrame.
Usage
ml_kmeans(x, centers, max.iter = 100, features = dplyr::tbl_vars(x), ...)
Arguments
- x
- An object coercable to a Spark DataFrame (typically, a
tbl_spark
). - centers
- The number of cluster centers to compute.
- max.iter
- The maximum number of iterations to use.
- features
- The name of features (terms) to use for the model fit.
- ...
- Optional arguments; currently unused.
See Also
For information on how Spark k-means clustering is implemented, please see http://spark.apache.org/docs/latest/mllib-clustering.html#k-means.
Other Spark ML routines: ml_als_factorization
,
ml_decision_tree
,
ml_generalized_linear_regression
,
ml_gradient_boosted_trees
,
ml_lda
, ml_linear_regression
,
ml_logistic_regression
,
ml_multilayer_perceptron
,
ml_naive_bayes
,
ml_one_vs_rest
, ml_pca
,
ml_random_forest
,
ml_survival_regression
Community examples
Looks like there are no examples yet.