ml_linear_regression(x, response, features, intercept = TRUE, alpha = 0, lambda = 0, iter.max = 100L, ml.options = ml_options(), ...)tbl_spark).response is a formula, it is used in preference to other
parameters to set the response, features, and intercept
parameters (if available). Currently, only simple linear combinations of
existing parameters is supposed; e.g. response ~ feature1 + feature2 + ....
The intercept term can be omitted by using - 1 in the model fit.ml_options for more details.In particular, with alpha set to 1, the parameterization
is equivalent to a lasso
model; if alpha is set to 0, the parameterization is equivalent to
a ridge regression model.
ml_als_factorization,
ml_decision_tree,
ml_generalized_linear_regression,
ml_gradient_boosted_trees,
ml_kmeans, ml_lda,
ml_logistic_regression,
ml_multilayer_perceptron,
ml_naive_bayes,
ml_one_vs_rest, ml_pca,
ml_random_forest,
ml_survival_regression