ml_generalized_linear_regression(x, response, features, intercept = TRUE, family = gaussian(link = "identity"), max.iter = 100L, ...)tbl_spark).response is a formula, it is used in preference to other
parameters to set the response, features, and intercept
parameters (if available). Currently, only simple linear combinations of
existing parameters is supposed; e.g. response ~ feature1 + feature2 + ....
The intercept term can be omitted by using - 1 in the model fit.glm.ml_linear_regression() and
ml_logistic_regression(), these routines do not allow you to
tweak the loss function (e.g. for elastic net regression); however, the model
fits returned by this routine are generally richer in regards to information
provided for assessing the quality of fit.
ml_als_factorization,
ml_decision_tree,
ml_gradient_boosted_trees,
ml_kmeans, ml_lda,
ml_linear_regression,
ml_logistic_regression,
ml_multilayer_perceptron,
ml_naive_bayes,
ml_one_vs_rest, ml_pca,
ml_random_forest,
ml_survival_regression