ml_als_factorization
From sparklyr v0.3.5
by Javier Luraschi
Spark ML -- Alternating Least Squares (ALS) matrix factorization.
Perform alternating least squares matrix factorization on a Spark DataFrame.
Usage
ml_als_factorization(x, rating.column = "rating", user.column = "user", item.column = "item", rank = 10L, regularization.parameter = 0.1, max.iter = 10L, ...)
Arguments
- x
- An object coercable to a Spark DataFrame (typically, a
tbl_spark
). - rating.column
- The name of the column containing ratings.
- user.column
- The name of the column containing user IDs.
- item.column
- The name of the column containing item IDs.
- rank
- Rank of the factorization.
- regularization.parameter
- The regularization parameter.
- max.iter
- The maximum number of iterations to use.
- ...
- Optional arguments; currently unused.
See Also
Other Spark ML routines: ml_decision_tree
,
ml_generalized_linear_regression
,
ml_gradient_boosted_trees
,
ml_kmeans
, ml_lda
,
ml_linear_regression
,
ml_logistic_regression
,
ml_multilayer_perceptron
,
ml_naive_bayes
,
ml_one_vs_rest
, ml_pca
,
ml_random_forest
,
ml_survival_regression
Community examples
Looks like there are no examples yet.