ml_kmeans(x, centers, iter.max = 100, features = dplyr::tbl_vars(x), compute.cost = TRUE, tolerance = 1e-04, ml.options = NULL, ...)tbl_spark).k-means model using Spark's computeCost.ml_options for more details.kmeans with overloaded print, fitted and predict functions.
Other Spark ML routines: ml_als_factorization,
ml_decision_tree,
ml_generalized_linear_regression,
ml_gradient_boosted_trees,
ml_lda, ml_linear_regression,
ml_logistic_regression,
ml_multilayer_perceptron,
ml_naive_bayes,
ml_one_vs_rest, ml_pca,
ml_random_forest,
ml_survival_regression