ft_one_hot_encoder
Feature Transformation -- OneHotEncoder
One-hot encoding maps a column of label indices to a column of binary vectors, with at most a single one-value. This encoding allows algorithms which expect continuous features, such as Logistic Regression, to use categorical features.
Usage
ft_one_hot_encoder(x, input.col = NULL, output.col = NULL, ...)
Arguments
- x
An object (usually a
spark_tbl
) coercable to a Spark DataFrame.- input.col
The name of the input column(s).
- output.col
The name of the output column.
- ...
Optional arguments; currently unused.
See Also
See http://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformation routines: ft_binarizer
,
ft_bucketizer
,
ft_discrete_cosine_transform
,
ft_elementwise_product
,
ft_index_to_string
,
ft_quantile_discretizer
,
ft_regex_tokenizer
,
ft_sql_transformer
,
ft_string_indexer
,
ft_tokenizer
,
ft_vector_assembler
,
sdf_mutate