ml_multilayer_perceptron
Spark ML -- Multilayer Perceptron
Creates and trains multilayer perceptron on a Spark DataFrame.
Usage
ml_multilayer_perceptron(x, response, features, layers, iter.max = 100,
seed = sample(.Machine$integer.max, 1), ml.options = ml_options(), ...)
Arguments
- x
An object coercable to a Spark DataFrame (typically, a
tbl_spark
).- response
The name of the response vector (as a length-one character vector), or a formula, giving a symbolic description of the model to be fitted. When
response
is a formula, it is used in preference to other parameters to set theresponse
,features
, andintercept
parameters (if available). Currently, only simple linear combinations of existing parameters is supposed; e.g.response ~ feature1 + feature2 + ...
. The intercept term can be omitted by using- 1
in the model fit.- features
The name of features (terms) to use for the model fit.
- layers
A numeric vector describing the layers -- each element in the vector gives the size of a layer. For example,
c(4, 5, 2)
would imply three layers, with an input (feature) layer of size 4, an intermediate layer of size 5, and an output (class) layer of size 2.- iter.max
The maximum number of iterations to use.
- seed
A random seed. Set this value if you need your results to be reproducible across repeated calls.
- ml.options
Optional arguments, used to affect the model generated. See
ml_options
for more details.- ...
Optional arguments. The
data
argument can be used to specify the data to be used whenx
is a formula; this allows calls of the formml_linear_regression(y ~ x, data = tbl)
, and is especially useful in conjunction withdo
.
See Also
Other Spark ML routines: ml_als_factorization
,
ml_decision_tree
,
ml_generalized_linear_regression
,
ml_gradient_boosted_trees
,
ml_kmeans
, ml_lda
,
ml_linear_regression
,
ml_logistic_regression
,
ml_naive_bayes
,
ml_one_vs_rest
, ml_pca
,
ml_random_forest
,
ml_survival_regression