ml_one_vs_rest(x, classifier, response, features, ml.options = ml_options(), ...)tbl_spark).only.model parameter supplied with ml_options.response is a formula, it is used in preference to other
parameters to set the response, features, and intercept
parameters (if available). Currently, only simple linear combinations of
existing parameters is supposed; e.g. response ~ feature1 + feature2 + ....
The intercept term can be omitted by using - 1 in the model fit.ml_options for more details.data argument can be used to
specify the data to be used when x is a formula; this allows calls
of the form ml_linear_regression(y ~ x, data = tbl), and is
especially useful in conjunction with do.ml_als_factorization,
ml_decision_tree,
ml_generalized_linear_regression,
ml_gradient_boosted_trees,
ml_kmeans, ml_lda,
ml_linear_regression,
ml_logistic_regression,
ml_multilayer_perceptron,
ml_naive_bayes, ml_pca,
ml_random_forest,
ml_survival_regression