A feature transformer that converts the input array of strings into an array of n-grams. Null values in the input array are ignored. It returns an array of n-grams where each n-gram is represented by a space-separated string of words.
ft_ngram(x, input_col = NULL, output_col = NULL, n = 2,
uid = random_string("ngram_"), ...)A spark_connection, ml_pipeline, or a tbl_spark.
The name of the input column.
The name of the output column.
Minimum n-gram length, greater than or equal to 1. Default: 2, bigram features
A character string used to uniquely identify the feature transformer.
Optional arguments; currently unused.
The object returned depends on the class of x.
spark_connection: When x is a spark_connection, the function returns a ml_transformer,
a ml_estimator, or one of their subclasses. The object contains a pointer to
a Spark Transformer or Estimator object and can be used to compose
Pipeline objects.
ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with
the transformer or estimator appended to the pipeline.
tbl_spark: When x is a tbl_spark, a transformer is constructed then
immediately applied to the input tbl_spark, returning a tbl_spark
When the input is empty, an empty array is returned. When the input array length is less than n (number of elements per n-gram), no n-grams are returned.
See http://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformers: ft_binarizer,
ft_bucketizer,
ft_chisq_selector,
ft_count_vectorizer, ft_dct,
ft_elementwise_product,
ft_feature_hasher,
ft_hashing_tf, ft_idf,
ft_imputer,
ft_index_to_string,
ft_interaction, ft_lsh,
ft_max_abs_scaler,
ft_min_max_scaler,
ft_normalizer,
ft_one_hot_encoder_estimator,
ft_one_hot_encoder, ft_pca,
ft_polynomial_expansion,
ft_quantile_discretizer,
ft_r_formula,
ft_regex_tokenizer,
ft_sql_transformer,
ft_standard_scaler,
ft_stop_words_remover,
ft_string_indexer,
ft_tokenizer,
ft_vector_assembler,
ft_vector_indexer,
ft_vector_slicer, ft_word2vec