
Perform hyper-parameter tuning using either K-fold cross validation or train-validation split.
ml_sub_models(model)ml_validation_metrics(model)
ml_cross_validator(
x,
estimator = NULL,
estimator_param_maps = NULL,
evaluator = NULL,
num_folds = 3,
collect_sub_models = FALSE,
parallelism = 1,
seed = NULL,
uid = random_string("cross_validator_"),
...
)
ml_train_validation_split(
x,
estimator = NULL,
estimator_param_maps = NULL,
evaluator = NULL,
train_ratio = 0.75,
collect_sub_models = FALSE,
parallelism = 1,
seed = NULL,
uid = random_string("train_validation_split_"),
...
)
A cross validation or train-validation-split model.
A spark_connection
, ml_pipeline
, or a tbl_spark
.
A ml_estimator
object.
A named list of stages and hyper-parameter sets to tune. See details.
A ml_evaluator
object, see ml_evaluator.
Number of folds for cross validation. Must be >= 2. Default: 3
Whether to collect a list of sub-models trained during tuning.
If set to FALSE
, then only the single best sub-model will be available after fitting.
If set to true, then all sub-models will be available. Warning: For large models, collecting
all sub-models can cause OOMs on the Spark driver.
The number of threads to use when running parallel algorithms. Default is 1 for serial execution.
A random seed. Set this value if you need your results to be reproducible across repeated calls.
A character string used to uniquely identify the ML estimator.
Optional arguments; currently unused.
Ratio between train and validation data. Must be between 0 and 1. Default: 0.75
The object returned depends on the class of x
.
spark_connection
: When x
is a spark_connection
, the function returns an instance of a ml_cross_validator
or ml_traing_validation_split
object.
ml_pipeline
: When x
is a ml_pipeline
, the function returns a ml_pipeline
with
the tuning estimator appended to the pipeline.
tbl_spark
: When x
is a tbl_spark
, a tuning estimator is constructed then
immediately fit with the input tbl_spark
, returning a ml_cross_validation_model
or a
ml_train_validation_split_model
object.
For cross validation, ml_sub_models()
returns a nested
list of models, where the first layer represents fold indices and the
second layer represents param maps. For train-validation split,
ml_sub_models()
returns a list of models, corresponding to the
order of the estimator param maps.
ml_validation_metrics()
returns a data frame of performance
metrics and hyperparameter combinations.
ml_cross_validator()
performs k-fold cross validation while ml_train_validation_split()
performs tuning on one pair of train and validation datasets.
# NOT RUN {
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
# Create a pipeline
pipeline <- ml_pipeline(sc) %>%
ft_r_formula(Species ~ .) %>%
ml_random_forest_classifier()
# Specify hyperparameter grid
grid <- list(
random_forest = list(
num_trees = c(5, 10),
max_depth = c(5, 10),
impurity = c("entropy", "gini")
)
)
# Create the cross validator object
cv <- ml_cross_validator(
sc,
estimator = pipeline, estimator_param_maps = grid,
evaluator = ml_multiclass_classification_evaluator(sc),
num_folds = 3,
parallelism = 4
)
# Train the models
cv_model <- ml_fit(cv, iris_tbl)
# Print the metrics
ml_validation_metrics(cv_model)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab