Writes a Spark dataframe stream into a parquet stream.
stream_write_parquet(
x,
path,
mode = c("append", "complete", "update"),
trigger = stream_trigger_interval(),
checkpoint = file.path(path, "checkpoints", random_string("")),
options = list(),
...
)
A Spark DataFrame or dplyr operation
The destination path. Needs to be accessible from the cluster. Supports the "hdfs://", "s3a://" and "file://" protocols.
Specifies how data is written to a streaming sink. Valid values are
"append"
, "complete"
or "update"
.
The trigger for the stream query, defaults to micro-batches runnnig
every 5 seconds. See stream_trigger_interval
and
stream_trigger_continuous
.
The location where the system will write all the checkpoint information to guarantee end-to-end fault-tolerance.
A list of strings with additional options.
Optional arguments; currently unused.
Other Spark stream serialization:
stream_read_csv()
,
stream_read_delta()
,
stream_read_json()
,
stream_read_kafka()
,
stream_read_orc()
,
stream_read_parquet()
,
stream_read_socket()
,
stream_read_text()
,
stream_write_console()
,
stream_write_csv()
,
stream_write_delta()
,
stream_write_json()
,
stream_write_kafka()
,
stream_write_memory()
,
stream_write_orc()
,
stream_write_text()
# NOT RUN {
sc <- spark_connect(master = "local")
sdf_len(sc, 10) %>% spark_write_parquet("parquet-in")
stream <- stream_read_parquet(sc, "parquet-in") %>% stream_write_parquet("parquet-out")
stream_stop(stream)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab