
Compute performance metrics.
ml_evaluate(x, dataset)# S3 method for ml_model_logistic_regression
ml_evaluate(x, dataset)
# S3 method for ml_logistic_regression_model
ml_evaluate(x, dataset)
# S3 method for ml_model_linear_regression
ml_evaluate(x, dataset)
# S3 method for ml_linear_regression_model
ml_evaluate(x, dataset)
# S3 method for ml_model_generalized_linear_regression
ml_evaluate(x, dataset)
# S3 method for ml_generalized_linear_regression_model
ml_evaluate(x, dataset)
# S3 method for ml_model_clustering
ml_evaluate(x, dataset)
# S3 method for ml_model_classification
ml_evaluate(x, dataset)
# S3 method for ml_evaluator
ml_evaluate(x, dataset)
An ML model object or an evaluator object.
The dataset to be validate the model on.
if (FALSE) {
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
ml_gaussian_mixture(iris_tbl, Species ~ .) %>%
ml_evaluate(iris_tbl)
ml_kmeans(iris_tbl, Species ~ .) %>%
ml_evaluate(iris_tbl)
ml_bisecting_kmeans(iris_tbl, Species ~ .) %>%
ml_evaluate(iris_tbl)
}
Run the code above in your browser using DataLab