One-hot encoding maps a column of label indices to a column of binary
vectors, with at most a single one-value. This encoding allows algorithms
which expect continuous features, such as Logistic Regression, to use
categorical features. Typically, used with ft_string_indexer() to
index a column first.
ft_one_hot_encoder(
x,
input_cols = NULL,
output_cols = NULL,
handle_invalid = NULL,
drop_last = TRUE,
uid = random_string("one_hot_encoder_"),
...
)The object returned depends on the class of x. If it is a
spark_connection, the function returns a ml_estimator or a
ml_estimator object. If it is a ml_pipeline, it will return
a pipeline with the transformer or estimator appended to it. If a
tbl_spark, it will return a tbl_spark with the transformation
applied to it.
A spark_connection, ml_pipeline, or a tbl_spark.
The name of the input columns.
The name of the output columns.
(Spark 2.1.0+) Param for how to handle invalid entries. Options are 'skip' (filter out rows with invalid values), 'error' (throw an error), or 'keep' (keep invalid values in a special additional bucket). Default: "error"
Whether to drop the last category. Defaults to TRUE.
A character string used to uniquely identify the feature transformer.
Optional arguments; currently unused.
Other feature transformers:
ft_binarizer(),
ft_bucketizer(),
ft_chisq_selector(),
ft_count_vectorizer(),
ft_dct(),
ft_elementwise_product(),
ft_feature_hasher(),
ft_hashing_tf(),
ft_idf(),
ft_imputer(),
ft_index_to_string(),
ft_interaction(),
ft_lsh,
ft_max_abs_scaler(),
ft_min_max_scaler(),
ft_ngram(),
ft_normalizer(),
ft_one_hot_encoder_estimator(),
ft_pca(),
ft_polynomial_expansion(),
ft_quantile_discretizer(),
ft_r_formula(),
ft_regex_tokenizer(),
ft_robust_scaler(),
ft_sql_transformer(),
ft_standard_scaler(),
ft_stop_words_remover(),
ft_string_indexer(),
ft_tokenizer(),
ft_vector_assembler(),
ft_vector_indexer(),
ft_vector_slicer(),
ft_word2vec()