# NOT RUN {
data(pbc)
pbccas <- split(pbc)$case
pbccon <- split(pbc)$control
h0 <- OS(pbc,nstar="geometric")
# Fixed
pbcrr1 <- risk(pbccas,pbccon,h0=h0,tolerate=TRUE)
# Asymmetric adaptive
pbcrr2 <- risk(pbccas,pbccon,h0=h0,adapt=TRUE,hp=c(OS(pbccas)/2,OS(pbccon)/2),
tolerate=TRUE,davies.baddeley=0.05)
# Symmetric (pooled) adaptive
pbcrr3 <- risk(pbccas,pbccon,h0=h0,adapt=TRUE,tolerate=TRUE,hp=OS(pbc)/2,
pilot.symmetry="pooled",davies.baddeley=0.05)
# Symmetric (case) adaptive; from two existing 'bivden' objects
f <- bivariate.density(pbccas,h0=h0,hp=2,adapt=TRUE,pilot.density=pbccas,
edge="diggle",davies.baddeley=0.05,verbose=FALSE)
g <- bivariate.density(pbccon,h0=h0,hp=2,adapt=TRUE,pilot.density=pbccas,
edge="diggle",davies.baddeley=0.05,verbose=FALSE)
pbcrr4 <- risk(f,g,tolerate=TRUE,verbose=FALSE)
par(mfrow=c(2,2))
plot(pbcrr1,override.par=FALSE,main="Fixed")
plot(pbcrr2,override.par=FALSE,main="Asymmetric adaptive")
plot(pbcrr3,override.par=FALSE,main="Symmetric (pooled) adaptive")
plot(pbcrr4,override.par=FALSE,main="Symmetric (case) adaptive")
# }
Run the code above in your browser using DataLab