
Last chance! 50% off unlimited learning
Sale ends in
Permits illustration of the uniquely identified tolerance contour regions
arising from a call to tol.classify
.
tol.classplot(pcpolys, add = FALSE, annotate = TRUE, ...)
Plots to the relevant graphics device.
A list of polygonal windows, each of class owin
.
This will almost always be the pcpolys
component of the object
returned by a call to tol.classify
.
A logical value indicating whether to add the unique regions to an existing plot (see 'Examples').
A logical value indicating whether to annotate each unique
region with its identifying number (which will correspond to the uniquely
split/classified points in a corresponding call to tol.classify
).
Additional arguments to be passed to text
to control the appearance of the annotations when annotate=TRUE
.
T. M. Davies
The tol.classify
function permits identification of
individual significance regions (that is, the tolerance contours). In
turn, tol.classplot
may be used to visualise these regions
optionally annotated by their unique identification number to better
understand the region-specific classifications of the case and control points.
Davies, T.M. and Hazelton, M.L. (2010), Adaptive kernel estimation of spatial relative risk, Statistics in Medicine, 29(23) 2423-2437.
Hazelton, M.L. and Davies, T.M. (2009), Inference based on kernel estimates of the relative risk function in geographical epidemiology, Biometrical Journal, 51(1), 98-109.
Kelsall, J.E. and Diggle, P.J. (1995), Kernel estimation of relative risk, Bernoulli, 1, 3-16.
if (FALSE) {
chrr <- risk(chorley,h0=0.7,tolerate=TRUE)
chclass <- tol.classify(chrr,cutoff=0.4)
oldpar <- par(mfrow=c(1,3))
#
plot(chrr,tol.args=list(levels=0.4))
tol.classplot(chclass$pcpolys)
plot(Window(chorley))
axis(1)
axis(2)
box(bty="l")
tol.classplot(chclass$pcpolys,add=TRUE,col=2,font=2,cex=1.5)
#
par(oldpar)
}
Run the code above in your browser using DataLab