Learn R Programming

⚠️There's a newer version (1.0.0) of this package.Take me there.

Sparse VAR (sparsevar)

Some R functions useful to estimate sparse VAR / VECM models.

Installation

To install the stable version from CRAN:

install.package("sparsevar")

To install the developing version:

install.packages("devtools")
devtools::install_github("svazzole/sparsevar", "master")

Quick start

To load the sparsevar package simply type

library(sparsevar)

Using the function included in the package, we simply generate a 20x20 VAR(2) process

set.seed(1)
sim <- simulateVAR(N = 20, p = 2)

This command will generate a model with two sparse matrices with 5% of non-zero entries and a Toeplitz variance-covariance matrix with rho = 0.5. We can estimate the matrices of the process using for example

fit <- fitVAR(sim$series, p = 2, threshold = TRUE)

The results can be seen by plotting the two var objects

plotVAR(sim, fit)

the first row of the plot is made by the matrices of the simulated process and the second row is formed by their estimates.

The fit contains also the estimate of the variance/covariance matrix of the residuals

plotMatrix(fit$sigma)

which can be compared with the covariance matrix of the errors of the generating process

plotMatrix(sim$sigma)

Usage

The functions included for model estimation are:

  • fitVAR: to estimate a sparse VAR multivariate time series with ENET, SCAD or MC+;
  • fitVARX: to estimate a sparse VAR-X model using ENET;
  • fitVECM: to estimate a sparse VECM (Vector Error Correction Model) using LS with penalty (again: ENET, SCAD or MC+);
  • impulseResponse: compute the impulse response function;
  • errorBands: estimate the error bands for the IRF (using bootstrap).

For simulations:

  • simulateVAR: to generate a sparse VAR multivariate time series;
  • simulateVARX: to generate a sparse VARX time series;
  • createSparseMatrix: used to create sparse matrices with a given density.

For plotting:

  • plotMatrix: useful to plot matrices and sparse matrices;
  • plotVAR: plot all the matrices of the model or models in input;
  • plotIRF: plot IRF function;
  • plotGridIRF: multiple plots of IRF.

Papers using sparsevar

[1] Gibbons SM, Kearney SM, Smillie CS, Alm EJ (2017) Two dynamic regimes in the human gut microbiome. PLoS Comput. Biol. 13(2): e1005364.

[2] Quentin Guibert, Olivier Lopez, Pierrick Piette, Forecasting mortality rate improvements with a high-dimensional VAR, Insurance: Mathematics and Economics, Volume 88, 2019, Pages 255-272, ISSN 0167-6687.

References

[1] Basu, Sumanta; Michailidis, George. Regularized estimation in sparse high-dimensional time series models. Ann. Statist. 43 (2015), no. 4, 1535--1567. doi:10.1214/15-AOS1315.

[2] Lütkepohl, Helmut. New Introduction to Multiple Time Series Analysis. Springer Science & Business Media, 2005, ISBN 3540277528.

Copy Link

Version

Install

install.packages('sparsevar')

Monthly Downloads

36

Version

0.1.0

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Simone Vazzoler

Last Published

April 18th, 2021

Functions in sparsevar (0.1.0)

errorBandsIRF

Error bands for IRF
checkImpulseZero

Check Impulse Zero
decomposePi

Decompose Pi VECM matrix
impulseResponse

Impulse Response Function
plotVAR

Plot VARs
checkIsVar

Check is var
plotVECM

Plot VECMs
maxNorm

Max-norm of a matrix
frobNorm

Froebenius norm of a matrix
fitVARX

Multivariate VARX estimation
lInftyNorm

L-infinity matrix norm
fitVECM

Multivariate VECM estimation
plotMatrix

Matrix plot
plotIRFGrid

IRF grid plot
companionVAR

Companion VAR
informCrit

Computes information criteria for VARs
l1norm

L1 matrix norm
computeForecasts

Computes forecasts for VARs
mcSimulations

Monte Carlo simulations
sparsevar

sparsevar: A package to estimate multivariate time series models (such as VAR and VECM), under the sparsity hypothesis.
simulateVAR

VAR simulation
simulateVARX

VARX simulation
varMCP

VAR MCP
varSCAD

VAR SCAD
accuracy

Accuracy metric
bootstrappedVAR

Bootstrap VAR
plotIRF

IRF plot
multiplot

Multiplots with ggplot
spectralNorm

Spectral norm
spectralRadius

Spectral radius
testGranger

Test for Ganger Causality
transformData

Transorm data
varENET

VAR ENET
createSparseMatrix

Create Sparse Matrix
fitVAR

Multivariate VAR estimation
l2norm

L2 matrix norm