Learn R Programming

spatcounts (version 1.1)

DIC: Deviance information criterion

Description

Deviance information criterion without standardizing constant.

Usage

DIC(Yin, fm.X, region, regmodel, burnin = 1)

Arguments

Yin
response vector of length n.
fm.X
formula for mean design.
region
region of each observation.
regmodel
the output of model fits obtained by using 'est.sc'.
burnin
number of steps dropped from the chain to allow for a burn-in phase. Defaults to 1.

Value

DIC
deviance information criterion.
mean.deviance
posterior mean of deviance.
p.D
effective number of parameters.

References

Gelman, Andrew, John B. Carlin, Hall S. Stern, and Donald B. Rubin (2003). Bayesian Data Analysis, Second Edition. Chapman \& Hall/CRC.

Spiegelhalter, David J.; Nicola G. Best, Bradley P. Carlin, and Angelika van der Linde (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B. 64 (4), 583-639.

Examples

Run this code
data(sim.Yin)
data(sim.fm.X)
data(sim.region)
data(sim.gmat)
data(sim.nmat)

poi <- est.sc(sim.Yin, ~1+sim.fm.X[,1]+sim.fm.X[,2], sim.region, 
model="Poi", sim.gmat, sim.nmat, 3)
DIC.poi <- DIC(sim.Yin, ~1+sim.fm.X[,1]+sim.fm.X[,2], sim.region, poi)

Run the code above in your browser using DataLab