Learn R Programming

spatial (version 7.3-5)

trls.influence: Regression diagnostics for trend surfaces

Description

This function provides the basic quantities which are used in forming a variety of diagnostics for checking the quality of regression fits for trend surfaces calculated by surf.ls.

Usage

trls.influence(object)
## S3 method for class 'trls':
plot(x, border = "red", col = NA, pch = 4, cex = 0.6,
     add = FALSE, div = 8, \dots)

Arguments

object, x
Fitted trend surface model from surf.ls
div
scaling factor for influence circle radii in plot.trls
add
add influence plot to existing graphics if TRUE
border, col, pch, cex, ...
additional graphical parameters

Value

  • trls.influence returns a list with components:
  • rraw residuals as given by residuals.trls
  • hiidiagonal elements of the Hat matrix
  • stresidstandardised residuals
  • DiCook's statistic

References

Unwin, D. J., Wrigley, N. (1987) Towards a general-theory of control point distribution effects in trend surface models. Computers and Geosciences, 13, 351--355.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

surf.ls, influence.measures, plot.lm

Examples

Run this code
library(MASS)  # for eqscplot
data(topo, package = "MASS")
topo2 <- surf.ls(2, topo)
infl.topo2 <- trls.influence(topo2)
(cand <- as.data.frame(infl.topo2)[abs(infl.topo2$stresid) > 1.5, ])
cand.xy <- topo[as.integer(rownames(cand)), c("x", "y")]
trsurf <- trmat(topo2, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE, col = "grey")
plot(topo2, add = TRUE, div = 3)
points(cand.xy, pch = 16, col = "orange")
text(cand.xy, labels = rownames(cand.xy), pos = 4, offset = 0.5)

Run the code above in your browser using DataLab