Learn R Programming

spatialAtomizeR (version 0.2.6)

vcov.abrm: Variance-covariance method for abrm objects Extracts variance-covariance matrices for regression coefficients from MCMC posterior samples. Returns separate matrices for X-grid and Y-grid coefficients.

Description

Variance-covariance method for abrm objects Extracts variance-covariance matrices for regression coefficients from MCMC posterior samples. Returns separate matrices for X-grid and Y-grid coefficients.

Usage

# S3 method for abrm
vcov(object, ...)

Value

A list with class "vcov.abrm" containing:

vcov_beta_x

Variance-covariance matrix for X-grid coefficients

vcov_beta_y

Variance-covariance matrix for Y-grid coefficients

vcov_beta_0

Variance of the intercept (scalar)

vcov_all

Combined variance-covariance matrix for all parameters

Arguments

object

An abrm object from run_abrm()

...

Additional arguments (unused)

Details

The variance-covariance matrices are computed from the posterior samples of the MCMC chains. If multiple chains were run, samples are combined across chains before computing covariances.

Examples

Run this code
if (FALSE) {
# Fit model
results <- run_abrm(...)

# Get variance-covariance matrices
vcov_mats <- vcov(results)

# Access specific matrices
vcov_mats$vcov_beta_x  # Covariance for X-grid coefficients
vcov_mats$vcov_beta_y  # Covariance for Y-grid coefficients

# Compute standard errors from diagonal
sqrt(diag(vcov_mats$vcov_beta_x))

# Compute correlation matrix
cov2cor(vcov_mats$vcov_beta_y)
}

Run the code above in your browser using DataLab