library(raster)
library(sp)
r <- raster(nrows=180, ncols=360, xmn=571823.6, xmx=616763.6, ymn=4423540,
ymx=4453690, resolution=270, crs = CRS("+proj=utm +zone=12 +datum=NAD83
+units=m +no_defs +ellps=GRS80 +towgs84=0,0,0"))
r[] <- rpois(ncell(r), lambda=1)
r <- calc(r, fun=function(x) { x[x >= 1] <- 1; return(x) } )
x <- sampleRandom(r, 10, na.rm = TRUE, sp = TRUE)
( class.1 <- land.metrics(x=x, y=r, bw=1000, bkgd = 0, metrics = c(4,7,33,34)) )
( all.class <- land.metrics(x=x, y=r, bw=1000, bkgd = NA, metrics = c(4,7,33,34)) )
# Pull metrics associated with class "0"
all.class[["0"]]
Run the code above in your browser using DataLab