library(raster)
library(sp)
data(meuse)
data(meuse.grid)
coordinates(meuse) = ~x+y
coordinates(meuse.grid) = ~x+y
proj4string(meuse.grid) <- CRS("+init=epsg:28992")
gridded(meuse.grid) = TRUE
r <- raster(meuse.grid)
# Using a raster mask
pa <- pseudo.absence(meuse, n=100, window='hull', KDE=TRUE, Mask = r,
sigma='Diggle', s=50)
col.br <- colorRampPalette(c('blue','yellow'))
plot(pa$kde, col=col.br(10))
plot(meuse, pch=20, cex=1, add=TRUE)
plot(pa$sample, col='red', pch=20, cex=1, add=TRUE)
legend('top', legend=c('Presence', 'Pseudo-absence'),
pch=c(20,20),col=c('black','red'))
# With clustered data
library(sp)
library(spatstat.core)
data(bei)
trees <- as(bei, 'SpatialPoints')
trees <- SpatialPointsDataFrame(coordinates(trees),
data.frame(ID=1:length(trees)))
trees.abs <- pseudo.absence(trees, n=100, window='extent', KDE=TRUE)
col.br <- colorRampPalette(c('blue','yellow'))
plot(trees.abs$kde, col=col.br(10))
plot(trees, pch=20, cex=0.50, add=TRUE)
plot(trees.abs$sample, col='red', pch=20, cex=1, add=TRUE)
legend('top', legend=c('Presence', 'Pseudo-absence'),
pch=c(20,20),col=c('black','red'))
Run the code above in your browser using DataLab