
Last chance! 50% off unlimited learning
Sale ends in
Calculates entropy on integer raster (i.e., 8 bit 0-255)
Entropy calculated as: H = -sum(Pi*ln(Pi)) where; Pi, Proportion of one value to total values Pi=n(p)/m and m, Number of unique values. Expected range: 0 to log(m) H=0 if window contains the same value in all cells. H increases with the number of different values in the window. The ellipsis arguments can be used to write to disk using the filename argument.
Maximum entropy is reached when all values are different, same as log(m) max.ent <- function(x) log( length( unique(x) ) )
raster.entropy(x, d = 5, categorical = FALSE, global = FALSE, ...)
terra SpatRaster class object
A terra SpatRaster object (requires integer raster)
Size of matrix (window)
Is the data categorical or continuous (FALSE/TRUE)
Should the model use a global or local n to calculate entropy (FALSE/TRUE)
Optional arguments passed terra focal function
Fuchs M., R. Hoffmann, F. Schwonke (2008) Change Detection with GRASS GIS - Comparison of images taken by different sensor.
library(terra)
r <- rast(ncols=100, nrows=100)
r[] <- round(runif(ncell(r), 1,8), digits=0)
rEnt <- raster.entropy(r, d=5, categorical = TRUE, global = TRUE)
opar <- par(no.readonly=TRUE)
par(mfcol=c(2,1))
plot(r)
plot(rEnt)
par(opar)
Run the code above in your browser using DataLab