# \donttest{
library(Matrix)
set.seed(2)
# number of observations
n <- 100
# true parameters
beta <- c(0, 1, -1)
rho <- 0.75
# design matrix with two standard normal variates as "covariates"
X <- cbind(intercept=1, x=rnorm(n), y=rnorm(n))
# sparse identity matrix
I_n <- sparseMatrix(i=1:n, j=1:n, x=1)
# number of nearest neighbors in spatial weight matrix W
m <- 6
# spatial weight matrix with m=6 nearest neighbors
# W must not have non-zeros in the main diagonal!
lat <- rnorm(n)
long <- rnorm(n)
W <- kNearestNeighbors(lat, long, k=6)
# innovations
eps <- rnorm(n=n, mean=0, sd=1)
# generate data from model
S <- I_n - rho * W
z <- solve(qr(S), X %*% beta + eps)
y <- as.vector(z >= 0) # 0 or 1, FALSE or TRUE
# estimate SAR probit model
fit1 <- sar_probit_mcmc(y, X, W, ndraw=100, thinning=1, prior=NULL)
plot(fit1, which=c(1,3), trueparam = c(beta, rho))
# }
Run the code above in your browser using DataLab