Last chance! 50% off unlimited learning
Sale ends in
Estimates the (bivariate) pair correlation functions of a point pattern, given an array of (bivariate) K functions.
# S3 method for fasp
pcf(X, …, method="c")
An array of multitype "fasp"
).
Arguments controlling the smoothing spline
function smooth.spline
.
Letter "a"
, "b"
, "c"
or "d"
indicating the
method for deriving the pair correlation function from the
K
function.
A function array (object of class "fasp"
,
see fasp.object
)
representing an array of pair correlation functions.
This can be thought of as a matrix Y
each of whose entries
Y[i,j]
is a function value table (class "fv"
)
representing the pair correlation function between
points of type i
and points of type j
.
The pair correlation function of a stationary point process is
Kest
for information
about
We also apply the same definition to
other variants of the classical Kcross
, Kdot
) and the
inhomogeneous Kinhom
).
For all these variants, the benchmark value of
This routine computes an estimate of pcf
.
The argument X
should be
a function array (object of class "fasp"
,
see fasp.object
)
containing several estimates of alltypes
with the argument fun="K"
.
The smoothing spline operations are performed by
smooth.spline
and predict.smooth.spline
from the modreg
library.
Four numerical methods are available:
"a" apply smoothing to
"b" apply smoothing to
"c" apply smoothing to
"d" apply smoothing to
Method "c"
seems to be the best at
suppressing variability for small values of "b"
which effectively
constrains "a"
seems
comparatively unreliable.
Useful arguments to control the splines
include the smoothing tradeoff parameter spar
and the degrees of freedom df
. See smooth.spline
for details.
Stoyan, D, Kendall, W.S. and Mecke, J. (1995) Stochastic geometry and its applications. 2nd edition. Springer Verlag.
Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical statistics. John Wiley and Sons.
Kest
,
Kinhom
,
Kcross
,
Kdot
,
Kmulti
,
alltypes
,
smooth.spline
,
predict.smooth.spline
# NOT RUN {
# multitype point pattern
KK <- alltypes(amacrine, "K")
p <- pcf.fasp(KK, spar=0.5, method="b")
plot(p)
# strong inhibition between points of the same type
# }
Run the code above in your browser using DataLab