Last chance! 50% off unlimited learning
Sale ends in
Estimates the mark-weighted
Kmark(X, f = NULL, r = NULL,
correction = c("isotropic", "Ripley", "translate"), ...,
f1 = NULL, normalise = TRUE, returnL = FALSE, fargs = NULL) markcorrint(X, f = NULL, r = NULL,
correction = c("isotropic", "Ripley", "translate"), ...,
f1 = NULL, normalise = TRUE, returnL = FALSE, fargs = NULL)
An object of class "fv"
(see fv.object
).
Essentially a data frame containing numeric columns
the values of the argument
the theoretical value of
together with a column or columns named
"iso"
and/or "trans"
,
according to the selected edge corrections. These columns contain
estimates of the mark-weighted
obtained by the edge corrections named (if returnL=FALSE
).
The observed point pattern.
An object of class "ppp"
or something acceptable to
as.ppp
.
Optional. Test function
Optional. Numeric vector. The values of the argument
A character vector containing any selection of the
options "isotropic"
, "Ripley"
or "translate"
.
It specifies the edge correction(s) to be applied.
Alternatively correction="all"
selects all options.
Ignored.
An alternative to f
. If this argument is given,
then
If normalise=FALSE
,
compute only the numerator of the expression for the
mark correlation.
Compute the analogue of the K-function if returnL=FALSE
or the analogue of the L-function if returnL=TRUE
.
Optional. A list of extra arguments to be passed to the function
f
or f1
.
Adrian Baddeley Adrian.Baddeley@curtin.edu.au
and Rolf Turner r.turner@auckland.ac.nz
The functions Kmark
and markcorrint
are identical.
(Eventually markcorrint
will be deprecated.)
The mark-weighted
The mark-weighted
Under the hypothesis of random labelling, the
mark-weighted
The mark-weighted markcorr
for a definition of the
mark correlation function.
Given a marked point pattern X
,
this command computes edge-corrected estimates
of the mark-weighted returnL=FALSE
then the estimated
function
Penttinen, A., Stoyan, D. and Henttonen, H. M. (1992) Marked point processes in forest statistics. Forest Science 38 (1992) 806-824.
Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008) Statistical analysis and modelling of spatial point patterns. Chichester: John Wiley.
markcorr
to estimate the mark correlation function.
# CONTINUOUS-VALUED MARKS:
# (1) Spruces
# marks represent tree diameter
# mark correlation function
ms <- Kmark(spruces)
plot(ms)
# (2) simulated data with independent marks
X <- rpoispp(100)
X <- X %mark% runif(npoints(X))
Xc <- Kmark(X)
plot(Xc)
# MULTITYPE DATA:
# Hughes' amacrine data
# Cells marked as 'on'/'off'
M <- Kmark(amacrine, function(m1,m2) {m1==m2},
correction="translate")
plot(M)
Run the code above in your browser using DataLab