Last chance! 50% off unlimited learning
Sale ends in
For a marked point pattern,
estimate the inhomogeneous version of the multitype
FmultiInhom(X, J,
lambda = NULL, lambdaJ = NULL, lambdamin = NULL,
...,
r = NULL)
Object of class "fv"
containing the estimate of the
inhomogeneous multitype
A spatial point pattern (object of class "ppp"
.
A subset index specifying the subset of points to which
distances are measured. Any kind of subset index acceptable
to [.ppp
.
Intensity estimates for each point of X
.
A numeric vector of length equal to npoints(X)
.
Incompatible with lambdaJ
.
Intensity estimates for each point of X[J]
.
A numeric vector of length equal to npoints(X[J])
.
Incompatible with lambda
.
A lower bound for the intensity,
or at least a lower bound for the values in lambdaJ
or lambda[J]
.
Extra arguments passed to as.mask
to control
the pixel resolution for the computation.
Vector of distance values at which the inhomogeneous
Ottmar Cronie and Marie-Colette van Lieshout. Rewritten for spatstat by Adrian Baddeley Adrian.Baddeley@curtin.edu.au.
See Cronie and Van Lieshout (2015).
Cronie, O. and Van Lieshout, M.N.M. (2015) Summary statistics for inhomogeneous marked point processes. Annals of the Institute of Statistical Mathematics DOI: 10.1007/s10463-015-0515-z
Finhom
X <- amacrine
J <- (marks(X) == "off")
online <- interactive()
eps <- if(online) NULL else 0.025
if(online && require(spatstat.model)) {
mod <- ppm(X ~ marks * x, eps=eps)
lambdaX <- fitted(mod, dataonly=TRUE)
lambdaOff <- predict(mod, eps=eps)[["off"]]
lmin <- min(lambdaOff) * 0.9
} else {
## faster computation for package checker only
lambdaX <- intensity(X)[as.integer(marks(X))]
lmin <- intensity(X)[2] * 0.9
}
plot(FmultiInhom(X, J, lambda=lambdaX, lambdamin=lmin, eps=eps))
Run the code above in your browser using DataLab