Uses Cronie and van Lieshout's criterion based on Cambell's formula to select a smoothing bandwidth for the kernel estimation of point process intensity.
bw.CvL(X, ..., srange = NULL, ns = 16, sigma = NULL, warn=TRUE)
A single numerical value giving the selected bandwidth.
The result also belongs to the class "bw.optim"
(see bw.optim.object
)
which can be plotted to show the bandwidth selection criterion
as a function of sigma
.
A point pattern (object of class "ppp"
).
Ignored.
Optional numeric vector of length 2 giving the range of values of bandwidth to be searched.
Optional integer giving the number of values of bandwidth to search.
Optional. Vector of values of the bandwidth to be searched.
Overrides the values of ns
and srange
.
Logical. If TRUE
, a warning is issued if the optimal value of the
cross-validation criterion occurs at one of the ends of the search interval.
Ottmar Cronie ottmar@chalmers.se and Marie-Colette van Lieshout Marie-Colette.van.Lieshout@cwi.nl. Adapted for spatstat by Adrian Baddeley Adrian.Baddeley@curtin.edu.au, Rolf Turner rolfturner@posteo.net and Ege Rubak rubak@math.aau.dk.
This function selects an appropriate bandwidth sigma
for the kernel estimator of point process intensity
computed by density.ppp
.
The bandwidth
The value of density.ppp
,
for ns
different values of srange[1]
and srange[2]
.
Cronie, O and Van Lieshout, M N M (2018) A non-model-based approach to bandwidth selection for kernel estimators of spatial intensity functions, Biometrika, 105, 455-462.
density.ppp
,
bw.optim.object
.
Alternative methods:
bw.diggle
,
bw.scott
,
bw.ppl
,
bw.frac
.
For adaptive smoothing bandwidths, use bw.CvL.adaptive
.
if(interactive()) {
b <- bw.CvL(redwood)
b
plot(b, main="Cronie and van Lieshout bandwidth criterion for redwoods")
plot(density(redwood, b))
plot(density(redwood, bw.CvL))
}
# \testonly{
b <- bw.CvL(redwood, srange=c(0.03, 0.07), ns=2)
# }
Run the code above in your browser using DataLab