Learn R Programming

spatstat.linnet (version 3.4-0)

densityHeat.lpp: Kernel Density on a Network using Heat Equation

Description

Given a point pattern on a linear network, compute a kernel estimate of intensity, by solving the heat equation.

Usage

# S3 method for lpp
densityHeat(x, sigma=NULL, ...,
              at=c("pixels", "points"), leaveoneout=TRUE,
              weights = NULL,
              dx = NULL, dt = NULL, iterMax = 1e+06,
              finespacing = TRUE, verbose=FALSE)

Arguments

Value

If at="pixels" (the default), a pixel image on the linear network (object of class "linim").

If at="points", a numeric vector with one entry for each point of x.

Details

The function densityHeat is generic. This is the method for the class "lpp" of points on a linear network.

Kernel smoothing is applied to the points of x using a kernel based on path distances in the network. If at="pixels" (the default), the result is a pixel image on the linear network (class "linim") which can be plotted. If at="points" the result is a numeric vector giving the density estimates at the data points of x.

The smoothing operation is equivalent to the “equal-split continuous” rule described in Section 9.2.3 of Okabe and Sugihara (2012). However, the actual computation is performed rapidly, by solving the classical time-dependent heat equation on the network, as described in McSwiggan et al (2016). Computational time is short, but increases quadratically with sigma.

If at="points" and leaveoneout=TRUE, a leave-one-out estimate is computed at each data point (that is, the estimate at each data point x[i] is based on all of the points except x[i]) using the truncated series approximation of McSwiggan et al (2019).

The argument sigma specifies the smoothing bandwidth. If sigma is missing or NULL, the default is one-eighth of the length of the shortest side of the bounding box of x. If sigma is a function in the R language, it is assumed to be a bandwidth selection rule, and it will be applied to x to compute the bandwidth value.

References

McSwiggan, G., Baddeley, A. and Nair, G. (2016) Kernel density estimation on a linear network. Scandinavian Journal of Statistics 44, 324--345.

McSwiggan, G., Baddeley, A. and Nair, G. (2019) Estimation of relative risk for events on a linear network. Statistics and Computing 30, 469--484.

Okabe, A. and Sugihara, K. (2012) Spatial analysis along networks. Wiley.

See Also

density.lpp

Examples

Run this code
  X <- runiflpp(3, simplenet)
  D <- densityHeat(X, 0.2)
  plot(D, style="w", main="", adjust=2)
  densityHeat.lpp(X, 0.2, at="points")
  Dw <- densityHeat(X, 0.2, weights=c(1,2,-1))

Run the code above in your browser using DataLab