Learn R Programming

spatstat.linnet (version 3.4-0)

densityQuick.lpp: Kernel Estimation of Intensity on a Network using a 2D Kernel

Description

Estimates the intensity of a point process on a linear network using a two-dimensional smoothing kernel.

Usage

densityQuick.lpp(x, sigma=NULL, ...,
         kernel="gaussian",
         at = c("pixels", "points"),
         what = c("estimate", "se", "var"),
         leaveoneout = TRUE,
         diggle = FALSE,
         edge2D = FALSE,
         weights = NULL,
         positive = FALSE)

Arguments

Value

If at="pixels" (the default), a pixel image on the linear network (object of class "linim").

If at="points", a numeric vector with one entry for each point of x.

Details

Kernel smoothing is applied to the points of x using a two-dimensional Gaussian kernel, as described in Rakshit et al (2019). The result is a pixel image on the linear network (class "linim") which can be plotted.

Other techniques for kernel smoothing on a network are implemented in density.lpp. The main advantages of using a two-dimensional kernel are very fast computation and insensitivity to changes in the network geometry. The main disadvantage is that it ignores the connectivity of the network. See Rakshit et al (2019) for further explanation.

The argument sigma specifies the smoothing bandwidth. If sigma is missing or NULL, the default is one-eighth of the length of the shortest side of the bounding box of x. If sigma is a function in the R language, it is assumed to be a bandwidth selection rule, and it will be applied to x to compute the bandwidth value.

References

Rakshit, S., Davies, T., Moradi, M., McSwiggan, G., Nair, G., Mateu, J. and Baddeley, A. (2019) Fast kernel smoothing of point patterns on a large network using 2D convolution. International Statistical Review 87 (3) 531--556. DOI: 10.1111/insr.12327.

See Also

density.lpp, the main function for density estimation on a network.

bw.scott, bw.scott.iso, bw.lpplfor bandwidth selection.

Examples

Run this code
   X <- unmark(chicago)
   plot(densityQuick.lpp(X, 500))
   plot(densityQuick.lpp(X, 500, diggle=TRUE))
   plot(densityQuick.lpp(X, bw.scott.iso))
   plot(densityQuick.lpp(X, 500, what="se"))

Run the code above in your browser using DataLab